Subject Code: XXXXX Roll No:

BTECH (SEM-5) STRUCTURAL ANALYSIS 2021-22

TIME:3 HOUR

Total Marks: 100

Instruction: Attempt the questions as per the given instructions. Assume missing data suitably.

SECTION - A				
AttemptAll Partsin Brief $2*10 = 20$				
<u>Q1</u>	Questions	<u>Marks</u>		
(a)	Differentiate between determinate and indeterminate structures with example.	2		
(b)	Determine the degree of kinematic indeterminacy for plane truss structure as shown in the Fig.	2		
(c)	With figure illustrate the classification of plane truss.	2		
(d)	State the differences between a perfect truss and an imperfect truss.	2		
(e)	State the Betti's law with proper expression.	2		
(f)	What is the importance of influence line diagram ?	2		
(g)	Define Muller-Breslau's principal.	2		
(h)	What is radial shear and normal thrust in a three hinge arch?	2		
(i)	Define Eddy's theorem.	2		

SECTION - C				
Attempt <u>Any One</u> of the following 5 [*]				
Q3	Questions	Marks		
(a)	Find the static and kinematic indeterminacy of the structure as shown in the Fig.	10		
(b)	Find the static and kinematic indeterminacy of the structure as shown in the Fig.	10		
Q4	Questions	Marks		
(a)	By using method of sections calculate forces at member A, B and C.	10		

	$40 \text{ kN} 30 \text{ kN} 50 \text{ kN} 10 \text{ kN}$ $3m 2m 2m 2m$ $A \qquad \qquad B$ 16 m	
(b)	Draw the influence line diagram for forces in the members U_3L_4 , U_3U_4 and U_3L_4 of the frame as shown in the Fig. Find the maximum forces developed, when uniformly distributed load of intensity 40 kN/m, longer than the span moves from left to right on bottom chord. $U_1 \qquad U_2 \qquad U_3 \qquad U_4 \qquad U_5 \qquad U_6 \qquad U_7 \qquad I_4 \qquad I_7 \qquad I_4 \qquad I_7 \qquad I_4 \qquad I_7 \qquad I_6 \qquad I_7 \qquad I_7 \qquad I_8 \qquad I_7 \qquad I_8 \qquad I_8$	10
Q7	Questions	Marks
(a)	A symmetric three-hinged parabolic arch has a span of 30 m and a central rise of 6 m. The arch carries a distributed load which varies uniformly from 40 kN/m at each abutment to zero at mid-span. Determine: i. The horizontal thrust at the abutments. ii. Maximum positive bending moment in the arch.	10
(b)	Prove that the parabolic shape is a funicular shape for a three-hinged arch subjected to a uniformly distributed load over to its entire span.	10