Subject Code: XXXXX

Roll No:

BTECH

(SEM-5) INDUSTRIAL ENGINEERING 2021-22

Instruction: Attempt the questions as per the given instructions. Assume missing data suitably.

SECTION - A		
Attempt All Parts in Brief	$\mathbf{2 * 1 0 = \mathbf { 2 0 }}$	
$\mathbf{O 1}$	Ouestions	$\underline{\text { Marks }}$
(a)	Write short note on productivity.	2
(b)	What is group technology ?	2
(c)	Define forecasting.	2
(d)	What do you mean by scheduling ?	2
(e)	Draw the cost curve for fixed cost, variable cost and total cost.	2
(f)	What is safety stock ? How it is important?	2
(g)	What are the objectives of standardization ?	2
(h)	What do you understand by ergonomics ?	2
(i)	What are the limitations of graphical method for solving LPP ?	2
(j)	Describe the unbounded solution and no solution conditions with the help of diagram.	2

SECTION - B		
Attempt Any Three of the following		3*10 = 30
Q2	Questions	Marks
(a)	Describe process and product layout in detail. Also mention benefits and limitations of both.	10
(b)	What is material requirements planning (MRP) ? Discuss its structure in detail. Also describe JIT manufacturing system.	10
(c)	What is break-even point in business? Show this point on diagram. Explain ABC analysis and VED analysis in inventory control.	10
(d)	What is method study and what are its objectives? Explain the principle of motion economy in detail.	10

SECTION - C

Attemp	Any One of the			$10=50$
Q3	Questions			Marks
(a)	A firm has adopted simple exponential smoothing with $\boldsymbol{\alpha}=0.1$ to forecast its demand. The forecast for January was 500 units, whereas actual demand was 450 units. Forecast the demand for February. Assume that actual demand during February is 510 units, forecast the demand for the month of March. Continue forecasting up to June, assuming that subsequent demands were actually 520, 490 and 470 respectively. Also differentiate between PERT and CPM.			10
(b)	A network is formed by the following activities. The duration of the activities are given below: Draw the network, calculate the project completion time, identify the critical path and draw a table showing total float, free float, and independent float for each activity.			10
	Activity	Preceded by	Duration (Days)	
	A	Starting	4	
	B	A	2	
	C (Terminal)	D	5	
	D	E	2	
	E	A	6	
	F	B	1	

(b)	What is value engineering? What are its uses ? Describe the steps involved in value analysis.	10
Q6		Marks
(a)	In a work shop, certain type of machines break-down at an average rate of 6 per hour. The breakdowns are in accordance with Poisson process. The estimated cost of idle machine is 16 rupees per hour. Two repairmen Xand Y with different skills are being considered to be hired as repairmen. Repairman X takes six minutes on an average to repair a machine and his wages are 9 rupees per hour, whereas the repairman Y takes five minutes to repair and the wages are 10 rupees per hour. Which repairman's service should be used and why? Consider the work shift of 8 hours.	10
(b)	For a production system annual demand is 8000 unit and ordering cost is' 17000 rupees per order and inventory holding cost is 10% of unit price. Items can be purchased in a lot as given below determine the best order size.	10
	Lot size	
	1 to 999	
	1000 to 1499	
	1500 to 1999	
	2000 \& above	
Q7		Marks
(a)	Two products A and B are to be machined on three machine tools $\mathrm{M}_{1}, \mathrm{M}_{2}$ and M_{3}. Product A takes 10 hrs on machine $\mathrm{M}_{1}, 6 \mathrm{hrs}$ on machine M_{2} and 5 hrs on machine M_{3}. The product B takes 7.5 hrs on machine $\mathrm{M}_{1}, 9$ hrs on machine M_{2} and 13 hrs on machine M_{3}. The machining time available on these machine tools $\mathrm{M}_{1}, \mathrm{M}_{2}$, M_{3} are respectively 75 hrs .54 hrs and 65 hrs per week. The producer contemplates profit of Rs. 80 per product A, and Rs. 100 per product B. Formulate LP model for maximizing the profit and show the feasible region graphically. Find the optimal solution.	10
(b)	Use Vogel's approximation method to obtain an initial feasible solution of the transportation problem:	10

	D_{1}	D_{2}	D_{3}	D_{4}	Available \downarrow	
	11	13	17	14	250	
S_{1}	16	18	14	10	300	
S_{2}	21	24	13	10	400	
S_{3}	200	225	275	250		
Demand						

