Subject Code: XXXXX Roll No:

BTECH (SEM-5) DIGITAL SIGNAL PROCESSING 2021-22

TIME:3 HOUR

Total Marks: 100

Instruction: Attempt the questions as per the given instructions. Assume missing data suitably.

SECTION - A				
Attempt <u>All Parts</u> in Brief 2*:				
<u>Q1</u>	Questions	<u>Marks</u>		
(a)	Define the recursive and non-recursive systems.	2		
(b)	Enlist the condition for Linear Phase FIR digital with 5 number of samples.	2		
(c)	Differentiate Butterworth Low Pass Filter with Chebyshev in terms of Filter Order.	2		
(d)	Evaluate the value of $C_3(x)$, Chebyshev Polynomial.	2		
(e)	Demonstrate the term Gibb's phenomenon with schematic diagram.	2		
(f)	Explain the terms Truncation error and Round off error with suitable examples.	2		
(g)	Evaluate the DFT for the sequence [1,2, 7,3].	2		
(h)	Find out the total no of Complex additions and Complex multiplications required for calculating 8-point Conventional DFT and by using butterfly structure DIT-FFT.	2		
(i)	Explain the term Decimation with suitable example.	2		
(j)	Find the output of the sequence $[1 2 3]$ after up sampling by a factor N = 3.	2		

SECTION - B				
Attempt <u>Any Three</u> of the following 3 ³				
Q2	Questions	Marks		
(a)	Realize the given H(z) for using ladder structure. $H(z) = \frac{2 + 8z^{-1} + 6z^{-2}}{1 + 8z^{-1} + 12z^{-2}}$	10		
(b)	Design Digital Butterworth filter to satisfy the following constraints using bilinear transformation method, the sampling interval is 2 second: assume missing data if required: $0.52 \le H(e^{jw}) \le 1$, $0 \le w \le \pi/2$ $ H(e^{jw}) \le 0.1$, $3\pi/4 \le w \le \pi$	10		
(c)	Explain the concept of the Limit Cycle Oscillations and dead band effect with suitable example.	10		
(d)	Calculate the circular convolution using graphical method for $x(n) = [1,2,3,4]$ and $h(n) = [4,3,2,1]$	10		
(e)	Summarize QMF and Explain analytical and synthesis filter bank with aliasing free filter bank.	10		

SECTION - C				
Attempt <u>Any One</u> of the following 55				
Q3	Questions	Marks		
(a)	Describe the linear phase FIR system and for $h(n) = [1/2, 1/3, 1/5, 1/3, 1/2]$. Realize H(a) of the Linear phase FIR system for the given impulse response.	10		
(b)	Find out the direct form-I and direct form-II realization of a discrete-time system represented by the transfer function $y(n) = \frac{13}{12}y(n-1) - \frac{9}{24}y(n-2) - \frac{1}{24}y(n-3) + x(n) + 4x(n-1) + 3x(n-2)$	10		
Q4	Questions	Marks		
(a)	Design Chebyshev Digital LPF filter to satisfy the following constraints using Impulse Invariant method. $0.9 \leq H(e^{jw}) \leq 1$, $0 \leq w \leq 0.25 \pi$ $ H(e^{jw}) \leq 0.24$, $5\pi \leq w \leq \pi$	10		
(b)	Design Chebyshev Digital LPF filter to satisfy the following constraints using Bilinear Transformation	10		

	method, assume that the sampling time is one second. $0.707 \leq H(e^{jw}) \leq 1$, $0 \leq w \leq 0.2 \pi$ $ H(e^{jw}) \leq 0.1$, $0.5\pi \leq w \leq \pi$	
Q5	Questions	Marks
(a)	A low Pass filter is to be designed with the following specifications: $H_{d}(e^{jw}) = \begin{cases} e^{-2jw} , -\pi/4 \le w \le \pi/4 \\ 0 , & otherwise \end{cases}$ Using Rectangular window function, find the Filter coefficients and Frequency spectrum of the designed filter.	10
(b)	Design a filter with $H_{d}(e^{jw}) = \begin{cases} e^{-3jw} , -\pi/4 \le w \le \pi/4 \\ 0 , -\pi/4 \le w \le \pi \end{cases}$ Using Hamming window with M = 7.	10
Q6	Questions	Marks
(a)	Using DIF FFT find X (k) for x (n) = 2^{k+1} for N= 8	10
(b)	Derive and solve the DIT FET algorithm for 8 numbers of samples.	10
Q7	Questions	Marks
(a)	Explain the block diagrammatic presentation of DSP processor, with its architecture, addressing formats and its commercial usages.	10
(b)	Write a short note on LMS algorithm.	10